

Virtual Learning Essential Math 4

Unit 11
Lesson 3: Extending Exponents
May 13, 2020

Essential Math 4 Lesson: May 13, 2020

Learning Target:

I can use multiplication and fractions to understand exponents.

You will explore the use of multiplication and its relationship to exponents.

Directions:

- 1. Click through the slides.
- 2. Watch all videos on slides.
- 3. Do what each slide asks on a separate sheet of paper.

Bell Work: May 13, 2020

Use blocks to re-create the four-story tower. How many blocks do you need in total?

Bell Work Key May 13, 2020

28 blocks

Practice Problems: Unit 11 Lesson 3 page 13, # 10-11

10	Powers of 3
	$3^3 = 27$
	$3^2 = 9$
	31 =
	30 =
	3-1 =
-	3-2 =
-	$3^{-3} = \frac{1}{27}$

11)	Powers of 5
	$5^3 = 125$
	$5^2 = 25$
	5 ¹ =
	50 =
	5-1 =
	5-2 =
	5-3 =

Answer Key: After completing the problems, check your answers for page 13 here.

11) Powers of 5 $5^3 = 125$ $5^2 = 25$ $5^1 = 5$ $5^{0} =$

Practice Problems: Unit 11 Lesson 3 (page 19)

Additional Practice

A Cross out the one expression that isn't equivalent to all the others.

The equivalent expressions all equal

$$x^{5} \div x^{0} \qquad \frac{x^{15}}{x^{2}x} \qquad x^{2}x^{3}$$

$$\frac{x^{10}}{x^{5}} \qquad x^{-1}x^{6} \qquad \frac{x^{3}x^{4}}{x^{2}}$$

B Cross out the one expression that isn't equivalent to all the others.

The equivalent expressions all equal

Answer Key: After completing the problems, check your answers for page 19 here.

Additional Practice

A Cross out the one expression that isn't equivalent to all the others.

The equivalent expressions all equal ______X⁵

B Cross out the one expression that isn't equivalent to all the others.

The equivalent expressions all equal _____X-4___.

Practice Problems: Unit 11 Lesson 3 page 19

Write three equivalent expressions for each of the following.

$$c^{13} \div c^{5}$$

$$\frac{m^{20}}{m^5}$$

Answer Key: After completing the problems, check your answers for page 19 here.

Write three equivalent expressions for each of the following.

 $u^3 \cdot u^{-11} \cdot u^{-2}$ $u^{-1} \cdot u^{-9}$

(Many possible responses.)

(D) $c^{13} \div c^{5}$ c^{13} c^{13} c^{13} c^{13}

C4 . C4

m5 . m5 . m5

m-1 . m16

n2 • n5 • n5

n13 . n-1

Practice Problems: Unit 11 Lesson 3 (page 13, # 16)

Discuss & Write What You Think

Carla and Jacob are debating their strategies for answering $5^3 \cdot 5^{-2} =$ ____.

Carla says: "Negative exponents are fractions. So we can write the problem as $5 \cdot 5 \cdot 5 \cdot \frac{1}{5} \cdot \frac{1}{5}$."

Jacob says: "Negative exponents mean division. So we can write the problem as $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$."

Explain how they can both be correct.

Answer Key: After completing the problems, check your answers for page 13 here.

Discuss & Write What You Think

Carla and Jacob are debating their strategies for answering $5^3 \cdot 5^{-2} = 5$.

Carla says: "Negative exponents are fractions. So we can write the problem as $5 \cdot 5 \cdot 5 \cdot \frac{1}{5} \cdot \frac{1}{5}$."

Jacob says: "Negative exponents mean division. So we can write the problem as $5 \cdot 5 \cdot 5 \div 5 \div 5$."

Explain how they can both be correct.

Multiplying by $\frac{1}{5}$ is the same as dividing by 5. Both strategies show both multiplying and dividing by 5. $5 \cdot \frac{1}{5} = 1$ and $5 \div 5 = 1$, so in both cases the expressions are equivalent to $5 \cdot 1 \cdot 1 = 5$.

Practice Problems: Unit 11 Lesson 3 (page 13)

Thinking Out Loud

Finish and perform this dialogue.

Michael: Can we come up with a way to explain five to the zero (he writes 5°)? I know that it's 1 (he writes $5^{\circ} = I$), but every time I see it, I still think it's zero.

Answer
Key: After
completing
the
problems,
check your
answers
for page 13
here.

Finish and perform this dialogue.

Michael: Can we come up with a way to explain five to the zero (he writes 5^{0})? I know that it's 1 (he writes $5^{0} = I$), but every time I see it, I still think it's zero.

(Dialogues will vary.)

Listen for arguments like: $5^2 \div 5 = 5^1$ and $5^1 \div 5 = 5^0$ As exponents decrease, we divide by the base number. So 5^0 is $5^1 \div 5$,

which is 1.

Multiplying terms with the same base works by adding exponents. So, for example, $5^2 \cdot 5^5 = 5^7$. To follow with this rule, $5^0 \cdot 5^5$ should be 5^5 , which would make $5^0 = 1$.

Multiplying by 1 doesn't change a number. So 5^2 can be written as $1 \cdot 5 \cdot 5$, 5^1 can be written as $1 \cdot 5$, and 5^0 can be written as 1 without any 5's multiplied.

Fun Stuff:

Fun Stuff: Key

Resources were developed at EDC (Education Development Center, Inc). EDC owns the copyright © 2011-2019

